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ABSTRACT

Based on a distributed parameter model for vibrations, an approximate finite

dimensional dynamic compensator is designed to suppress vibrations (multiple modes

with a broad band of frequencies) of a circular plate with Kelvin-Voigt damping and

clamped boundary conditions. The control is realized via piezoceramic t)atches bonded

to the plate and is calculated from information available from several pointwise observed

state variables. Examples from computational studies as well as use in laboratory

ext)eriments are presented to demonstrate the effectiveness of this design.
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1. INTRODUCTION

In re('e)_tyears,a great (lealof researchhasbee, carrie(l out (m 1.t1('(l('velol)ment
and (levivati(mof ('ontrol (|(,signsfrom an infinite dimeilsio)_alstate-spa('eal)l)roa('h;
howeveI"weal'euilavcal'eof a[IViml)lemetltation l)asedon slit:Itdesignsl)(,i)Igvel)ot't('d i)a

the li(.eva(.ure. We have |)reset)ted briefly in [I] some preliminary e×l)eriment.a] results ()n

illl[)lellletltaLioll of all ollt|))lt f('edback ('ontrol which was designed based on an infillit("

dimensional (or distributed) system. [11this paper we attempt to summarize (he (h,sigTl

methodology a.n(I give further (tis('ussiotl of the implementation.

The f(,¢,dl)a(:k (-ol)t,)'()] syste)l_ was implemented on a circular ])late with a t)iezo -

ceramic |)atch as a.('tllator. This ehoi(:e of structure was motivated t)y the fact that it

is all isolated coml)(>nent fi'om the st.rlwtural acoustic system described i)l [7, 8]. The

st.vll(:t.lH'e in that syst(-nl is made u 11of a hardwalled ('ylindev with a ('lamp('d ('ir(')da.r

plate at. (me end at_(l the corltvol ))voblem consists of using ])iezo('era)ni(" patches ()n

the ])late to ve(htce t.he iHteriov stru('ture-l)orn sou))d pressure levels which result when

the plate is subjected to a strong ('xteviov acoustic fieI(t. The i)avtial differentia] equa-

tioH (PD|£) system whi('h des('rii)es th(' (tyllamics of this circular t)late i._ t)veseIlte(t it)
Se('tioll 3 below.

It) o)H" ('onl.vol design, three primary concerns are: I) l)rese)we of distuvbanc(, in

both inl)ut a11(l output of the system; 2) robustness of control: 3) lack of fill] st_it(,

iI]eaSlll'eII)ent. T]|ose (:Ollcerns teat] to ,_i (]esigll I)rol)]elIl illVO]Vill_ (13:n,_IYiic col'lll)e)|-

sat.ors for distril))Ited l)aram('ter systems. A great deal of re('eHt rese_r(']l has bee))

(:arvied on the i))(lividuaI or combined (oI)ics of our ('on('er))s here. ]:or exa)_)I)le, set"

[2, ,'I, 13, 15, 16, 17, I_, 20, 21], an(l (he r(,f(,velwes therein. This l)vobl(')la involves (lifli(',lt

iss)Les a))(I many th('orel, i(:al and ('o)ni)ut_atio)_al questions re)nat)) to I)(" resolved. The

l)url)ose of this I)al)('r is to (l(,mollstra(.e how iinite dime_si(mal ('()ntr()] theory together

with al)I)roximation theory for ('et'(ai_ optimal control I)roblems (-all be used t,o su(:('ess-

fidly des|g)) a_(l iml)leme_t feedba('k controllers for flexible structures. A finile dimen-

sio,al (ly_amic (-ompensatov desigH is o_(liH(,d i_1 S(wti(m 2. Th(" al)l)roxima(.i(>_ s('h(')_e

which lea(I,_ to a fi_it.e di)l_e,siot_al (:o_lti'ol problem will be discussed i11 Set'rio, .l. A )_-

mevical example is 7,iv(,n i_) N('(tio)l 5 al()_g with exp('rimental results t,o 1)vovi(t(' t)v('lil)_-

i_ary vali(la.ti(>_ r('gar(lit_4 th(" iH_pleme_tation of a PDE-based (distvib_(.('(I paramet.('r

ot" itltinite dimettsiot_al syst('t/l base<l) lnethod for redueit)?_ structural vil)r+_t.ions.

2. CONTROL PROBLEM FORMULATION

We first co,,_idev a, H-(li))_('_sio)_al syst.em

.0(:.) : :/(0) :

!L,_)(l) : (7!/(l), (11

= //!/(:)+

where the state variable y is in IIC, the co_t.rol _zis in II¢TM, the )neasurem('nt y,I, is i_ ff¢_'

and the ('()ntrolle(t output z is ]1_ //)>' for so)he tinit.e t)ositive int.e_evs ,, _z. p, a_d r.



Tile coefficientsA, B, C, H, and G are time invariant matrices. The performance

index (or cost function) is given by

J(u) = tL _ z(t)
2dr

(2)
: +<Ru(,),,,(,)>}

subject to (1). In (2), Q = H'H, R = G'G, where we assume H'G = 0. The control

problem is to find a controller u E L2(0, oo; fl_m) which minimizes the cost function (2).

We are interested in the case when, as in most practical situations, measurement

of the full state is not available (p < ,2). (We note that when yob(t) = y(t) the solution

can be obtained by applying the well known linear quadratic regulator (LQR) optimal

control theory.) One possible approach is to build a state estimator or observer to

reconstruct the state from the measured partial state. One can then feed back this

reconstructed state, tn this paper, we consider a full order observer for simplicity (it is

adequate for the plate experiments described below). Design of low order observers is

important when the dimension of the control system is large, and we refer to [10, 15]
for details on reduced order observers.

Let the reconstructed state be denoted by y_(t). We consider the standard com-

pensator (of Luenberger type [19]) for system (1) given by

ilk(t) = A_y_(t) + Fyob(t),

A_ = A- FC- BK, (3)

= -I(yJt),

for a properly chosen feedback gain K and observer gain F so that the reconstruction

error ]yc(t) -- y(t)] -_ 0 as t --* oo and the closed loop system

y_(t) A_ y_(t)

is exponentially stable. Intuitively, we would like to choose F such that the observer

poles of A - FC are deep in the left half complex plane to obtain fast convergence of
the reconstruction error. This must be done with care since an observer so constructed

is very sensitive to any observation noise that may exist.

Among several compensator designs, we first consider the so called optimal com-

pensator. Suppose that the matrix Q is nonnegative-definite, R is positive-definite, the

pair (A, B)is stabilizable, (A,C)is detectable, (A,G)is controllable, and (A, H)is

observable. Then there exist unique (minimal) optimal feedback gain K and observer

gain F given by

t; = B'n (4)
F = PC'k -1 (5)

2



whereH and P areunique nonnegative-definitesolutionsto the following regulatorand
observeralgebraicRiccati equations

HA + A'H - HBR -_B'[I + Q = o,

PA' + AP - PC'R-_CP + O, = O,

(6)
(7)

In (7), (_ isrespectively. Thus the optimal estimator is obtained and given by (3)-(5).

a nonnegative symmetric matrix and /_ is a positive symmetric matrix. Tile matrices

Q, R, Q, and R are determined by some design criteria for the specific control problems.

We point out that this "optimal" observer can be defined without depending on the

(traditional) stochastic formulation. The name "optimal" is derived from the stochastic

interpretation of the above design (see [13, 19] for further discussions). Briefly, the
above described observer

(s){l_(t)= (A- BR-1B'II)yc(t) + PC'fg-'C(y(t)-y_(t))

is simply tile Kalman-Bucy filter if we consider the system (1) disturbed by the uncor-

related stationary Gaussian white noise v_(t) and v2(t):

[l(t) = Ay(t) + Bu(t) + v,(t),

>_(t) = cv(t) +,,:(t),
_(t) : Hv(t) + (;_(t),

where

v(o) = yo,
(9)

E{,,,(t)} = 0, E{,,(t),'l(_)} = 0 _(t - _)
E{,_(t)} = o, E{v,(t)4(_)} = ke(t- _)

Here £'{ } is the expected value. The observer (8) is optimal in the sense that the limit

of the mean square reconstructed error

li_,: g'{ (y(t) - y_(t))'W (y(t) - y_(t))}

(W is a weighting matrix) is minimal with respect to all other observers (e.g., see [19]).

Even though the optimal compensator provides us wi'tll the desired performance,

it is well-known that it may lack robustness. To design a robust dynamic compensator,

let us consider the system (1) with input and output disturbance w(t)

y(t) = Ay(t) + Bu(t) + Dw(t), y(0) = y0,

rob(t) = cv(t) + Ew(t), (lo)
z(t) = Hu(t) + (;_,(t),

where the disturbance vector w(t) is in _q for some finite positive integer q. The

coefficients D and E are time invariant matrices. Furthermore, we will restrict ourselves

to matrices H, G, D, and E such that H'H = Q >_ 0, G'G = R > O, H'(; = O, DD' =



(_ > O, EE' = R > O, DE' = O. Tile more general case where tile cross product

terms HIG and DE' are not zero can be dealt with ill a similar manner with slight

modifications (see [9]).

Our objective is to design a robust controller that provMes acceptal)le l)erformance

with disturbed incomplete state measurements. ()ne such design technique is the so-

called llo<,/MinMax compensator given in [9]. One formulates Ho<,-control problems

in the time dotnain and obtains a soft-constrained dynamic game associated with tile

disturbance attenuation problem. Tile control problem is formulated as a l_\>rm of

optimization of a performance index (or cost function). For this purpose, we introduce

the extended performance index:

(ll)

subject to (10). Tile optimization problem is to find a controller u* C l; - L2(O, oc; llg.''_)

and disturbance w* C W =_ L2(O, oc;/R q) such that

J£ = inf sup ,]_(u, w) = .]_(u*, w*).
uEU u,EW

One seeks necessary and sufficient conditions on 3< so that quantity ,l._ is finite. The

lower bound of 7 for which J._ < oc is the optimal minimax attenuation level and is

denoted by 7*, i.e.

7" = i,,f{2 : .]._ < _}.

The first part of the optimization problem formulates the soft-constrained game and

tile second is a disturbance attemmtion problem (7 is the attenuation level). It can be

shown that the results of this optimization problem yields a bound for the Hoo-norm

of the transfer function from disturbance w(t) to tile controlled output z(t).

To be more precise, the central results for this control problem (:all be summarized

as following. Let the pair (A, H) be stabilizable, (A, (7) be detectable, (A, (;) be/:ontrol-

lable, and (A, tf) be observable. For a given attenuation 7 > 0, there exist (minimal)

positive definite solutions II and P to the following two algebraic Riccati equations

HA + A'II - II(BR-'B'- 7-20)H + Q = 0, (12)

pAl+ AP- P((:'R-'C - 7-2Q)I'+ _)= O, (13)

respectively. Moreover, if the st)ectral radius p of PI1 satisfies the con(lition

tO([)[l) < _,2, OI" U - ,.)2/)-1 < O, (14)

then there exists a unique optimal controller

.,,'(t) = (15)

and tile state estimator y_(t) C _'_ satisfies



where

#_(t) = A_yc(t)+ Fyob(t),

>(0) ---- >o,

A_ = A - BK- FC +,),-2QlI

F =- (I - 7-2Pl])-lP(7'/_ -1.

In addition, we have 7 >- 7*-

The resulting closed-loop system

with the controlled output

(16)

A -BK ]FC A_
(17)

z,,,=[- oo -OK >(t) (18)

is stable.

Finally, if we let }(.q) and tb(s) denote the Laplace transform of z(t) and w(t)

respectively, then the transfer function from the disturbance w(t) to the controlled

output z(t) is expressed by

T(.s)_ _7) _ [H_(s) 0 -I3K -1

Furthermore, the Ho<_norm of the transfer function (19) is bounded by

IlT(.)lloo _ _.

Thus, if we follow this procedure we obtain a dynamic compensator which not only

stabilizes the system with imperfect state measurements, but also provides robustness.

3. STRUCTURAL MODEL

In this section, the mathematical model used to describe the experimental setup

is given. To reduce coml)utational complexity, in our initial experiments the structure

is axisymmetrically configured. We point out that all of the results and techniques

presented here can be extended directly to the more general case of nonaxisymmet-

ric configurations. The structure under study is a fixed-edge circular plate with a

centrally placed circular shaped piezoelectric ceramic patch for actuation and sens-

ing. The equations of motion will be formulated in l)olar coordinates (r, 0). IhMer

the Love-Kirchhoff plate theory with Kelvin-Voigt (or strain rate) damping, the trans-

verse vibrations w(t, r, 0) of a plate of radius a subject to an axisymmetric external force



g(t, r, O) are described by tile system

02w Ow 02Mr 20Mr 10Me 0 < r < a

/5(,', 0)_-2 + c_-_ + 0r---T- + - V 2Mve + g7" 07" r 0r ' t>0

Ow
w(t,,,,o) = o, _ (t,a,O) = o,

(20)

where the internal bending Illolllellts are

Mr = O(,.,0)(°2w ,,(,,0)0w) ( ,,(,.,0)02 )\0,._ + ,. _ +CD(,',0) +\ Or2 0t r Or Ot /

(!Ow 0 02w\ (102wMo : D(,.,O) -b-7.+'('' )-a-;J) +c_(''°) ,.o,.ot
03W

--- +,,(,.,0)_),

and the piezoceramic patch generated excitation moment is Mve = ]CBXveU(t). Here ca is

the viscous (air) damping coefficient, and u(t) is the voltage applied to the patch. With
Eh 3

E denoting the Young's modulus, the spatial variables D = ]2(1-.2), u, /5 and CD rep-

resent the flexural rigidity, Poisson's ratio, the mass density per area, and Kelvin-Voigt

damping for the plate/patch structure. The constant £7R is a piezoelectric parameter

depending on the material piezoelectric properties as well as geometry, and the char-

acteristic function _w is given by Xw(r) = 1, for r < ave , _pe(r) = 0, for r > ave , for a

patch of radius ape. The term V 2 M w in (20) is an unbounded operator involving Dirac

delta function derivatives.

Let fl denote the region occupied by the plate and 9_ve that of the patch. The

energy (weak or variational) form of system (20) is

02w Ow 02rl dw + - Me dw

= f_ ICt_u(t)V2_dw+fu g_dw
pe

(21)

for a class of test functions '1 (see [8] for details).

4. PLATE VIBRATION CONTROL

For the control examples discussed here, we will concentrate on the situation where

the plate starts with a given initial displacement and velocity and is then allowed to

vibrate. It is also assumed that there are no external forces applied, i.e. g(t, r, O) = O.

The goal in the control problem is to determine a voltage u(t) which, when applied to

the piezoceramic patch, leads to a significantly reduced level of vibration. For our dis-

cussions in this note, the control problem formulation (1)-(2) is used and we implement

the optimal observer of (3)-(8). Robustness of the controller was not considered in our

first attempt of implementation of the control design. However, it is the subject of our

current efforts and will be reported on elsewhere.
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Tile systemdescribingthe dynamicsof tile plate is infinite dimensional.To approx-
imate tile plate dynamics, a Fourier-Calerkin schemeis used to discretize the infinite
dimensioualsystem (21). Followingthe ideasdetailed ill [8], tile plate displacementis
apt)roxinlatedby

N

wN(g'"'0) = Z'uN(g)/Jn(7''0)

where { B,_(r, N0)},_=1 are cubic spline/Fourier basis functions.

expansion (22) into (21) yields the 2N x 2N matrix system

(22)

The substitution of the

{IN(t,) = ANyN(t) + BNu(t),
yN(0) = yoU, (2:3)

wher(? yN([,) __ [wiN(t),... WNN(_), tbN(l¢),..., _bNN(_)] denotes the 2N x 1 vector contain-

ing tile generalized Fourier coefficients for the approxinmte displacement and velocity

(see [8] for details concerning the discretization of the circular plate equation and for-

mulation of the matrices A N and BN). To simplify the notation, the superscript N

(which is fxed) will be dropped hereafter in this note. The systems in what follows are
understood to be finite dimensional.

It has been shown in [5, 6, 12] that the approximation scheme is well defined in

the sense that solution to the finite dimensional system (23) converges to the solution

to tile original infinite dimensic _al system (21).

For tile finite dimensional approximate system, the problem of determining a con-

trolling voltage can be posed as tile problem of finding u(t) which minimizes the cost

function (2) where y(t) is tile solution to (23). From tile control design results in

Section 2, the optimal controller and observer are easily obtained from (3) (7).

We report here on a finite dimensional compensator for the approximate system.

A natural question is whether this compensator will stabilize the infinite dimensional

system. For bounded input and bounded output operator systems, we refer to [13, 15]

for detailed discussions on this issue. For the systems with unbounded input and

output operators, additional results and conditions under which well-posedness and

convergence are assured can be found in [4, 16, 17_ 18, 20] as well as other references.

5. NUMERICAL EXAMPLES

It is known that the PDE-based control design introduced in preceding sections

requires accurate knowledge of system parameters _, D, v, CD, Ca and K:B. Even

though material handbooks may provide partial information, the damping coefficients

are always unknown and the piezoelectric material constant is given only up to certain

range of values. Before the feedback control law can be designed and implemented,

significant parameter identification efforts must be carried out. Tile methodology and

results for theoretical issues for this parameter identification is reported in [3, 8]. Spe-

cific parameter identification results using experimental data which were obtained from

our circular plate were reported in [1]. The same experimental setup was later used ill

control law imt)lementation. Tile dimension of the aluminum plate and piezoceramic



patch are summarized in Table 1. The table also contains "handbook" values for tile

Young's modulus, Poisson ratio and density of the plate and patch. The estimated

parameters via fitting model response to the experimental data are summarized in Ta-

ble 2. As explained in [12], the parameters/5, D, CD and u have discontinuities (at the

patch boundary r = av) which must be estimated.

Radius

Thickness

Young's modulus

Density

Poisson ratio

Strain coefficient

Plate Properties Patch Properties

a = .2286(m)

h = .00127(m)

E = 7.1 x 101° (N/m 2)

p = 2700 (kg/m a)

v = .33

tad = .01905 (m)

T = .0001778 (m)

= 6.3× 1oTM (N/.,
Pv_ = 7600 (kg/m a)

vp_ = .31

dal = 190 x 10-12 (re�V)

Table 1. Plate and PZT properties.

ina.

Est.

(kg/m 2)

beam b+P

3.429

3.157 3.123

D (N' m)

beam b+P

13.601

11.017 11.178

co (N.. m. s)

xl0 -4

beam b+P

2.158 2.210

beam b+P

.33

.3304 .3271

Ca _B

. N/.,) (N/V)

.013369

15.566 .015288

Table 2. Analytical and estimated values of the physical parameters.

Using these estimated values of the physical parameters, simulation studies were

carried out. To closely resemble the experimental setup, we assumed that a single

point observation, velocity at center, is available. The nonnegative 2N x 2N matrix Q

was chosen by taking energy into consideration and weighted as explained in [3], and

the positive matrix R is just. a positive constant which penalizes unrealistically large

voltages. The matrices Q, R are chosen to be 2N x 2N and p x p identity matrices,

respectively, where p is the number of observations (p = 1 in our simulation study).

The simulation was carried out in two steps. First, the PDE system with an

external excitation force and without control (u(t) = 0) was solved for the time period

of [0, tl]. The excitation force was cut off before time tl. The solutions at tl were then

used as initial conditions (displacemeut and velocity) in solving the system with control.

A recorded impact hammer hit was used as the excitation force. The simulation result

is depicted in Figure 1. In this figure, plot (a) is a time history of uncontrolled versus

controlled velocities, and plot (b) is the control voltage fed back to the piezoceramic

patch. The maximum voltage reflected the choice of weights d = 1 and R_ = 10 .7

for the design parameters Q and R respectively. It was observed that it is the ratio

R¢/d which influences the amplitude of the controlling voltage. The sampling time was

set to 1/12000 Hz, and dimension of the approximation was set to N = 16 under the

criteria that solution to (23) does not vary significantly if the dimension was larger

than 16. The time tl for which the control feedback loop was closed was taken to be

0.01 seconds.
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Figure 1. Simulation results: (a) Uncontrolled and controlled plate vibrations;

(b) The controlling voltage.



The simulation studieswere most encouragingand we subsequentlyimplemented
tile control designin the Acoustic Division at NASA Langley Research Center. A nun>

ber of practical problems arose during the implementation; a significant one involved

the use of all accelerometer as sensor. To obtain the structural velocity, an approximate

integrator was used to integrate the acceleration signal. This integrator is defined by

(see [141)

iS(t) + _6(t) + _2_)(t) = h(t), (24)

where v(t) is velocity and a(t)is acceleration. The equation (24) has zero DC gain

and frequency response close to that of exact integration for co > 6_. Since the first

structural mode was approximately 58 Hz, the design parameter _ was set to 16rr rad/s.

Equation (24) was implemented by solving the following equivalent first order equation

Iv;,,][ [1]o,,,= 0 + 0

in which the second variable _ was introduced.

After obtaining the velocity, the estimated state at time t is evaluated by

_l_(t) = (A- BR-' B'II- PC'/_-1C)yc(/)+ P(;'R-' v(t) (25)

where v(t) is the integration of acceleration at the center of the plate. The backward

Euler method was employed to solve both differential equations (24) and (25). We

should point out that the last term in (25) is different from the one in (3) which was

used it, simulation. In (3), y(t) (in yob(t) = Cy(t))is a vector of generalized Fourier

coefficients, while it, the implementation, the observation yob(t) is at, observed variable

which can be used immediately instead of multiplying by the matrix C. The controlling

voltage u(t) was obtained through

u(t) = Ky_(t) (26)

and then fed back into the system. The matrices (A- BR-'B'H - Pc'R-'C) and A"

in (25) and (26) were calculated otTline to reduce computation time it, implementation.

As a preliminary investigation into the feasibility of implementing the feedback

control scheme, a series of experiments were conducted in which the plate was excited

with a centered impact hammer strike and the vibrations were recorded both with

and without controlling voltage being applied. In all cases, the same electronic setup

was used with the control cases differing only in that the calculated voltage was fed

back into the system whereas it was simply calculated and stored in the uncontrolled

case. Representative plots of the plate velocity (integrated from the data recorded by

the centered accelerometer) for the uncontrolled and controlled cases are given in Fig-

ure 2. The forces delivered by the hammer impact in the uncontrolled and controlled

case were nearly identical. By comparing the velocity levels in the two cases, it was

noted that a significant reduction was obtained in the controlled case with a controlling

10
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Figure 2. Experimental results: (a) Uncontrolled and controlled plate vibrations;

(b) The controlling voltage.
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voltage having a maxinmm value below 60 volts. Quantitatively, the application of
the controlling voltage leadsto a 47% reduction in maxinmm velocity levelsby time
t = 0.5 seconds and a reduction of 73% by t = 1 second. We are happy to report

that these results are typical of those recorded in a series of ext)eriments and hence

represent the typical reduction in vibration levels that were ol)tained when the con-

trolling voltage was fed back into the system in the manner described above. While

implementation procedures are not yet optimal, these preliminary tests demonstrated

that vibration levels could be effectively reduced when the PDE-based control scheme

was implemented. Further experiments are currently underway and will be reported

on at this conference.

6. CONCLUDING REMARKS

In this paper, the experimental implementation of a PDE-based feedback control

strategy for a flexible structure has been considered. The structure under considera-

tion was a thin circular plate with a centered piezoceramic patch. When the control

law was experimentally implemented, the control technique led to a significant reduc-

tions in tile plate vibrations. As we have noted, even more vibration reduction was

observed in corresponding simulation studies. We are currently conducting research

to investigate tile gap between the simulation and experimental findings. While the

results of implementation are not yet ideal, they provide a test as to the feasibility of

implementing a PDE-based method in this manner as well as indicating directions for

future experimental tests to further improve techniques and methodology.
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